Artificial Intelligence in Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) Data Analysis—Toward Retinal Metabolic Diagnostics

Natalie Thiemann, Svenja Rebecca Sonntag, Marie Kreikenbohm, Giulia Böhmerle, Jessica Stagge, Salvatore Grisanti, Thomas Martinetz, Yoko Miura

Abstract

The purpose of this study was to investigate the possibility of implementing an artificial intelligence (AI) approach for the analysis of fluorescence lifetime imaging ophthalmoscopy (FLIO) data even with small data. FLIO data, including the fluorescence intensity and mean fluorescence lifetime (τm) of two spectral channels, as well as OCT-A data from 26 non-smokers and 28 smokers without systemic and ocular diseases were used. The analysis was performed with support vector machines (SVMs), a well-known AI method for small datasets, and compared with the results of convolutional neural networks (CNNs) and autoencoder networks. The SVM was the only tested AI method, which was able to distinguish τm between non-smokers and heavy smokers. The accuracy was about 80%. OCT-A data did not show significant differences. The feasibility and usefulness of the AI in analyzing FLIO and OCT-A data without any apparent retinal diseases were demonstrated. Although further studies with larger datasets are necessary to validate the results, the results greatly suggest that AI could be useful in analyzing FLIO-data even from healthy subjects without retinal disease and even with small datasets. AI-assisted FLIO is expected to greatly advance early retinal diagnosis.
Original languageEnglish
Article number431
JournalDiagnostics
Volume14
Issue number4
Pages (from-to)431
ISSN2075-4418
DOIs
Publication statusPublished - 16.02.2024

Research Areas and Centers

  • Academic Focus: Biomedical Engineering

DFG Research Classification Scheme

  • 2.23-11 Ophthalmology
  • 2.22-32 Medical Physics, Biomedical Technology

Fingerprint

Dive into the research topics of 'Artificial Intelligence in Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) Data Analysis—Toward Retinal Metabolic Diagnostics'. Together they form a unique fingerprint.

Cite this