Abstract
Field Free Line (FFL) Magnetic Particle Imaging (MPI) allows for system function [1] or Radon based [2] image reconstruction and for projection imaging [3]. In light of efforts to scale up imaging systems (e.g. from mouse/rat size [3-6] to rabbit size [7]) and/or to increase the size of the field of view (FOV) compared to the bore of the scanner [8], the question gains in importance how the imaging process is affected by magnetic field inhomogeneities and gradient field nonlinearities, which may deform the FFL compared to an FFL produced by idealized homogeneous/linear magnetic fields. Moreover, truncation effects are an important aspect that has so far not been studied in FFL MPI. This contribution presents initial results of a comprehensive simulation study comparing Radon based and system function based image reconstruction in FFL MPI, both under idealized field conditions and in the presence of magnetic field inhomogeneities and gradient field nonlinearities.
Original language | English |
---|---|
Title of host publication | 2015 5th International Workshop on Magnetic Particle Imaging (IWMPI) |
Number of pages | 1 |
Volume | 1 |
Place of Publication | 978-1-4799-7269-2 |
Publisher | IEEE |
Publication date | 01.03.2015 |
Pages | 1-1 |
ISBN (Electronic) | 978-1-4799-7271-5 |
DOIs | |
Publication status | Published - 01.03.2015 |
Event | 5th International Workshop on Magnetic Particle Imaging (IWMPI) - Istanbul, Turkey Duration: 26.03.2015 → 28.03.2015 |