TY - JOUR
T1 - Androgen action
AU - Werner, Ralf
AU - Holterhus, Paul Martin
N1 - Publisher Copyright:
© 2014 S. Karger AG, Basel.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2014/6/20
Y1 - 2014/6/20
N2 - Androgens are important for male sex development and physiology. Their actions are mediated by the androgen receptor (AR), a ligand-dependent nuclear transcription factor. The activity of the AR is controlled at multiple stages due to ligand binding and induced structural changes assisted by the foldosome, compartmentalization, recruitment of coregulators, posttranslational modifications and chromatin remodeling, leading to subsequent transcription of androgen-responsive target genes. Beside these short-term androgen actions, there is phenomenological and experimental evidence of long-term androgen programming in mammals and in the human during sensitive programming time windows, both pre-and postnatally. At the olecular level, research into androgen insensitivity syndrome has unmasked androgen programming at the transcriptome level, in genital fibroblasts and peripheral blood mononuclear cells, and at the epigenome level. Androgens are crucial for male sex development and physiology during embryogenesis, at puberty and in adult life. Testosterone and its more potent metabolite, dihydrotestosterone, which is converted from testosterone within the target cell by 5α-reductase II, are the main androgens involved in male sex differentiation. Androgen action is mediated by a single AR. The AR belongs to the nuclear receptor 3 group C, composed of the glucocorticoid receptor (NR3C1), mineralocorticoid receptor (NR3C2), progesterone receptor (NR3C3) and AR (NR3C4), and acts as a ligand-dependent transcription factor.
AB - Androgens are important for male sex development and physiology. Their actions are mediated by the androgen receptor (AR), a ligand-dependent nuclear transcription factor. The activity of the AR is controlled at multiple stages due to ligand binding and induced structural changes assisted by the foldosome, compartmentalization, recruitment of coregulators, posttranslational modifications and chromatin remodeling, leading to subsequent transcription of androgen-responsive target genes. Beside these short-term androgen actions, there is phenomenological and experimental evidence of long-term androgen programming in mammals and in the human during sensitive programming time windows, both pre-and postnatally. At the olecular level, research into androgen insensitivity syndrome has unmasked androgen programming at the transcriptome level, in genital fibroblasts and peripheral blood mononuclear cells, and at the epigenome level. Androgens are crucial for male sex development and physiology during embryogenesis, at puberty and in adult life. Testosterone and its more potent metabolite, dihydrotestosterone, which is converted from testosterone within the target cell by 5α-reductase II, are the main androgens involved in male sex differentiation. Androgen action is mediated by a single AR. The AR belongs to the nuclear receptor 3 group C, composed of the glucocorticoid receptor (NR3C1), mineralocorticoid receptor (NR3C2), progesterone receptor (NR3C3) and AR (NR3C4), and acts as a ligand-dependent transcription factor.
UR - http://www.scopus.com/inward/record.url?scp=84930802568&partnerID=8YFLogxK
U2 - 10.1159/000363610
DO - 10.1159/000363610
M3 - Journal articles
AN - SCOPUS:84930802568
SN - 1421-7082
VL - 27
SP - 28
EP - 40
JO - Endocrine Development
JF - Endocrine Development
ER -