An Intraoral OCT Probe to Enhanced Detection of Approximal Carious Lesions and Assessment of Restorations

Hartmut Schneider, Martin Ahrens, Michaela Strumpski, Claudia Rüger, Matthias Häfer, Gereon Hüttmann, Dirk Theisen-Kunde, Hinnerk Schulz-Hildebrandt, Rainer Haak

Abstract

Caries, the world’s most common chronic disease, remains a major cause of invasive restorative dental treatment. To take advantage of the diagnostic potential of optical coherence tomography (OCT) in contemporary dental prevention and treatment, an intraorally applicable spectral-domain OCT probe has been developed based on an OCT hand-held scanner equipped with a rigid 90°-optics endoscope. The probe was verified in vitro. In vivo, all tooth surfaces could be imaged with the OCT probe, except the vestibular surfaces of third molars and the proximal surface sections of molars within a "blind spot" at a distance greater than 2.5 mm from the tooth surface. Proximal surfaces of 64 posterior teeth of four volunteers were assessed by intraoral OCT, visual-tactile inspection, bitewing radiography and fiber-optic transillumination. The agreement in detecting healthy and carious surfaces varied greatly between OCT and established methods (18.2–94.7%), whereby the established methods could always be supplemented by OCT. Direct and indirect composite and ceramic restorations with inherent imperfections and failures of the tooth-restoration bond were imaged and qualitatively evaluated. The intraoral OCT probe proved to be a powerful technological approach for the non-invasive imaging of healthy and carious hard tooth tissues and gingiva as well as tooth-colored restorations.
Original languageEnglish
JournalJournal of Clinical Medicine
Volume9
Issue number10
ISSN2077-0383
DOIs
Publication statusPublished - 12.10.2020

Research Areas and Centers

  • Academic Focus: Biomedical Engineering

Fingerprint

Dive into the research topics of 'An Intraoral OCT Probe to Enhanced Detection of Approximal Carious Lesions and Assessment of Restorations'. Together they form a unique fingerprint.

Cite this