An improved robust model predictive control for linear parameter-varying input-output models

H. S. Abbas*, J. Hanema, R. Tóth, J. Mohammadpour, N. Meskin

*Corresponding author for this work
3 Citations (Scopus)


This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal set, which are solved offline, for the underlying online MPC optimization problem. The main attractive feature of the proposed scheme in comparison with previously published results is that all offline computations are now based on the convex optimization problem, which significantly reduces conservatism and computational complexity. Moreover, the proposed scheme can handle a wider class of linear parameter-varying input-output models than those considered by previous schemes without increasing the complexity. For an illustration, the predictive control of a continuously stirred tank reactor is provided with the proposed method.

Original languageEnglish
JournalInternational Journal of Robust and Nonlinear Control
Issue number3
Pages (from-to)859-880
Number of pages22
Publication statusPublished - 01.02.2018

Research Areas and Centers

  • Academic Focus: Biomedical Engineering


Dive into the research topics of 'An improved robust model predictive control for linear parameter-varying input-output models'. Together they form a unique fingerprint.

Cite this