An approach to separating the levels of hierarchical structure building in language and mathematics

Michiru Makuuchi, Jörg Bahlmann, Angela D. Friederici

18 Citations (Scopus)

Abstract

We aimed to dissociate two levels of hierarchical structure building in language and mathematics, namely 'first-level' (the build-up of hierarchical structure with externally given elements) and 'second-level' (the build-up of hierarchical structure with internally represented elements produced by first-level processes). Using functional magnetic resonance imaging, we investigated these processes in three domains: sentence comprehension, arithmetic calculation (using Reverse Polish notation, which gives two operands followed by an operator) and a working memory control task. All tasks required the build-up of hierarchical structures at the first- and second-level, resulting in a similar computational hierarchy across language and mathematics, as well as in a working memory control task. Using a novel method that estimates the difference in the integration cost for conditions of different trial durations, we found an anterior-to-posterior functional organization in the prefrontal cortex, according to the level of hierarchy. Common to all domains, the ventral premotor cortex (PMv) supports first-level hierarchy building, while the dorsal pars opercularis (POd) subserves second-level hierarchy building, with lower activation for language compared with the other two tasks. These results suggest that the POd and the PMv support domain-general mechanisms for hierarchical structure building, with the POd being uniquely efficient for language.

Original languageEnglish
JournalPhilosophical Transactions of the Royal Society B: Biological Sciences
Volume367
Issue number1598
Pages (from-to)2033-2045
Number of pages13
ISSN0962-8436
DOIs
Publication statusPublished - 01.01.2012

Fingerprint

Dive into the research topics of 'An approach to separating the levels of hierarchical structure building in language and mathematics'. Together they form a unique fingerprint.

Cite this