Abstract
D-serine is the major D-amino acid in the mammalian central nervous system. As the dominant co-agonist of the endogenous synaptic NMDA receptor, D-serine plays a role in synaptic plasticity, learning, and memory. Alterations in D-serine are linked to neuropsychiatric disorders including schizophrenia. Thus, it is of increasing interest to monitor the concentration of D-serine in vivo as a relevant player in dynamic neuron-glia network activity. Here we present a procedure for amperometric detection of D-serine with self-referencing ceramic-based microelectrode arrays (MEAs) coated with D-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO).We demonstrate in vitro D-serine recordings with a mean sensitivity of 8.61 ± 0.83 pA/μM to D-serine, a limit of detection (LOD) of 0.17 ± 0.01 μM, and a selectivity ratio of 80:1 or greater for D-serine over ascorbic acid (mean ± SEM; n = 12) that can be used for freely moving studies.
Original language | English |
---|---|
Article number | 20 |
Journal | Biosensors |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - 06.03.2018 |
Research Areas and Centers
- Academic Focus: Center for Brain, Behavior and Metabolism (CBBM)