Abstract
Identifying and controlling bias is a key problem in empirical sciences. Causal diagram theory provides graphical criteria for deciding whether and how causal effects can be identified from observed (nonexperimental) data by covariate adjustment. Here we prove equivalences between existing as well as new criteria for adjustment and we provide a new simplified but still equivalent notion of d-separation. These lead to efficient algorithms for two important tasks in causal diagram analysis: (1) listing minimal covariate adjustments (with polynomial delay); and (2) identifying the subdiagram involved in biasing paths (in linear time). Our results improve upon existing exponential-time solutions for these problems, enabling users to assess the effects of covariate adjustment on diagrams with tens to hundreds of variables interactively in real time.
Original language | English |
---|---|
Title of host publication | UAI'11 Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence |
Editors | Fabio Cozman, Avi Pfeffer |
Number of pages | 28 |
Place of Publication | Arlington, Virginia, USA |
Publisher | AUAI Press |
Publication date | 14.02.2012 |
Pages | 661-688 |
ISBN (Print) | ISBN: 978-0-9749039-7-2 |
Publication status | Published - 14.02.2012 |
Event | Twenty-Seventh Conference on Uncertainty in Artificial Intelligence - Barcelona, Spain Duration: 14.07.2011 → 17.07.2011 |