Abstract: Multi-Scale GANs for Memory-Effcient Generation of High Resolution Medical Images

Abstract

Generative adversarial networks (GANs) have shown impressive results for photo-realistic image synthesis in the last couple of years. They also offer numerous applications in medical image analysis, such as generating images for data augmentation, image reconstruction and image synthesis for domain adaptation. Despite the undeniable success and the large variety of applications, GANs still struggle to generate images of high resolution.

Original languageEnglish
Title of host publicationBildverarbeitung für die Medizin 2020
EditorsThomas Tolxdorff, Thomas M. Deserno, Heinz Handels, Andreas Maier, Klaus H. Maier-Hein
Number of pages1
Place of PublicationWiesbaden
PublisherSpringer Vieweg, Wiesbaden
Publication date12.02.2020
Pages286-286
ISBN (Print)978-3-658-29266-9
ISBN (Electronic)978-3-658-29267-6
DOIs
Publication statusPublished - 12.02.2020
EventBildverarbeitung für die Medizin 2020 - International workshop on Algorithmen - Systeme - Anwendungen
- Berlin, Germany
Duration: 15.03.202017.03.2020
Conference number: 237969

Research Areas and Centers

  • Academic Focus: Biomedical Engineering

Fingerprint

Dive into the research topics of 'Abstract: Multi-Scale GANs for Memory-Effcient Generation of High Resolution Medical Images'. Together they form a unique fingerprint.

Cite this