Abstract
Generative adversarial networks (GANs) have shown impressive results for photo-realistic image synthesis in the last couple of years. They also offer numerous applications in medical image analysis, such as generating images for data augmentation, image reconstruction and image synthesis for domain adaptation. Despite the undeniable success and the large variety of applications, GANs still struggle to generate images of high resolution.
Original language | English |
---|---|
Title of host publication | Bildverarbeitung für die Medizin 2020 |
Editors | Thomas Tolxdorff, Thomas M. Deserno, Heinz Handels, Andreas Maier, Klaus H. Maier-Hein |
Number of pages | 1 |
Place of Publication | Wiesbaden |
Publisher | Springer Vieweg, Wiesbaden |
Publication date | 12.02.2020 |
Pages | 286-286 |
ISBN (Print) | 978-3-658-29266-9 |
ISBN (Electronic) | 978-3-658-29267-6 |
DOIs | |
Publication status | Published - 12.02.2020 |
Event | Bildverarbeitung für die Medizin 2020 - International workshop on Algorithmen - Systeme - Anwendungen - Berlin, Germany Duration: 15.03.2020 → 17.03.2020 Conference number: 237969 |
Research Areas and Centers
- Academic Focus: Biomedical Engineering