TY - JOUR
T1 - ABCA7 Downregulation Modifies Cellular Cholesterol Homeostasis and Decreases Amyloid-β Peptide Efflux in an in vitro Model of the Blood-Brain Barrier
AU - Lamartinière, Yordenca
AU - Boucau, Marie Christine
AU - Dehouck, Lucie
AU - Krohn, Markus
AU - Pahnke, Jens
AU - Candela, Pietra
AU - Gosselet, Fabien
AU - Fenart, Laurence
PY - 2018/7/24
Y1 - 2018/7/24
N2 - The role of ABCA7 in brain homeostasis and Alzheimer's disease (AD) is currently under intense scrutiny, since it has been reported that polymorphisms in the Abca7 gene and a loss of function of the protein are closely linked to excessive accumulation of amyloid peptides and disturbed cholesterol homeostasis. The blood-brain barrier (BBB), which isolates the brain from the blood compartment, is involved in both of these processes. We therefore hypothesized that ABCA7 downregulation might affect cholesterol and amyloid exchanges at the BBB. Using siRNA and primary cultures of mouse endothelial cells purified from brain microvessels and seeded on Transwell ® inserts, we investigated the role of ABCA7 in cholesterol and amyloid exchanges across the BBB. Our results showed that a decrease in ABCA7 expression at the BBB provokes in vitro a reduction in ABCA1 expression and a decrease in APOE secretion. In vitro, these decreases reduce cholesterol exchange across the BBB, particularly for high-density lipoproteins and ApoA-I particles. When ABCA7 was absent, we observed a reduction in Aβ peptide basolateral-to-apical transport in the presence of ApoA-I, with non-significant changes in the expression levels of Rage, Lrp1, Abcb1, Abcc1, and Abcg2. Our study in murine BBB model highlighted a putative new role for ABCA7 in AD via the protein's involvement in cholesterol metabolism and amyloid clearance at the BBB.
AB - The role of ABCA7 in brain homeostasis and Alzheimer's disease (AD) is currently under intense scrutiny, since it has been reported that polymorphisms in the Abca7 gene and a loss of function of the protein are closely linked to excessive accumulation of amyloid peptides and disturbed cholesterol homeostasis. The blood-brain barrier (BBB), which isolates the brain from the blood compartment, is involved in both of these processes. We therefore hypothesized that ABCA7 downregulation might affect cholesterol and amyloid exchanges at the BBB. Using siRNA and primary cultures of mouse endothelial cells purified from brain microvessels and seeded on Transwell ® inserts, we investigated the role of ABCA7 in cholesterol and amyloid exchanges across the BBB. Our results showed that a decrease in ABCA7 expression at the BBB provokes in vitro a reduction in ABCA1 expression and a decrease in APOE secretion. In vitro, these decreases reduce cholesterol exchange across the BBB, particularly for high-density lipoproteins and ApoA-I particles. When ABCA7 was absent, we observed a reduction in Aβ peptide basolateral-to-apical transport in the presence of ApoA-I, with non-significant changes in the expression levels of Rage, Lrp1, Abcb1, Abcc1, and Abcg2. Our study in murine BBB model highlighted a putative new role for ABCA7 in AD via the protein's involvement in cholesterol metabolism and amyloid clearance at the BBB.
UR - http://www.scopus.com/inward/record.url?scp=85061214043&partnerID=8YFLogxK
U2 - 10.3233/JAD-170883
DO - 10.3233/JAD-170883
M3 - Journal articles
C2 - 30010117
AN - SCOPUS:85061214043
SN - 1387-2877
VL - 64
SP - 1195
EP - 1211
JO - Journal of Alzheimer's disease : JAD
JF - Journal of Alzheimer's disease : JAD
IS - 4
ER -