A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis

Lai Wen, Susanne Feil, Markus Wolters, Martin Thunemann, Frank Regler, Kjestine Schmidt, Andreas Friebe, Marcus Olbrich, Harald Langer, Meinrad Gawaz, Cor de Wit, Robert Feil

Abstract

Mechanisms that limit thrombosis are poorly defined. One of the few known endogenous platelet inhibitors is nitric oxide (NO). NO activates NO sensitive guanylyl cyclase (NO-GC) in platelets, resulting in an increase of cyclic guanosine monophosphate (cGMP). Here we show, using cGMP sensor mice to study spatiotemporal dynamics of platelet cGMP, that NO-induced cGMP production in pre-activated platelets is strongly shear-dependent. We delineate a new mode of platelet-inhibitory mechanotransduction via shear-activated NO-GC followed by cGMP synthesis, activation of cGMP-dependent protein kinase I (cGKI), and suppression of Ca2+ signaling. Correlative profiling of cGMP dynamics and thrombus formation in vivo indicates that high cGMP concentrations in shear-exposed platelets at the thrombus periphery limit thrombosis, primarily through facilitation of thrombus dissolution. We propose that an increase in shear stress during thrombus growth activates the NO-cGMP-cGKI pathway, which acts as an auto-regulatory brake to prevent vessel occlusion, while preserving wound closure under low shear.

Original languageEnglish
JournalNature Communications
Volume9
Issue number1
Pages (from-to)4301
ISSN1751-8628
DOIs
Publication statusPublished - 16.10.2018

Fingerprint

Dive into the research topics of 'A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis'. Together they form a unique fingerprint.

Cite this