TY - UNPB
T1 - A Safe Control Architecture Based on a Model Predictive Control Supervisor for Autonomous Driving
AU - Nezami, Maryam
AU - Maennel, Georg
AU - Abbas, Hossam Seddik
AU - Schildbach, Georg
PY - 2022/1/31
Y1 - 2022/1/31
N2 - This paper presents a novel, safe control architecture (SCA) for controlling an important class of systems: safety-critical systems. Ensuring the safety of control decisions has always been a challenge in automatic control. The proposed SCA aims to address this challenge by using a Model Predictive Controller (MPC) that acts as a supervisor for the operating controller, in the sense that the MPC constantly checks the safety of the control inputs generated by the operating controller and intervenes if the control input is predicted to lead to a hazardous situation in the foreseeable future invariably. Then an appropriate backup scheme can be activated, e.g., a degraded control mechanism, the transfer of the system to a safe state, or a warning signal issued to a human supervisor. For a proof of concept, the proposed SCA is applied to an autonomous driving scenario, where it is illustrated and compared in different obstacle avoidance scenarios. A major challenge of the SCA lies in the mismatch between the MPC prediction model and the real system, for which possible remedies are explored.
AB - This paper presents a novel, safe control architecture (SCA) for controlling an important class of systems: safety-critical systems. Ensuring the safety of control decisions has always been a challenge in automatic control. The proposed SCA aims to address this challenge by using a Model Predictive Controller (MPC) that acts as a supervisor for the operating controller, in the sense that the MPC constantly checks the safety of the control inputs generated by the operating controller and intervenes if the control input is predicted to lead to a hazardous situation in the foreseeable future invariably. Then an appropriate backup scheme can be activated, e.g., a degraded control mechanism, the transfer of the system to a safe state, or a warning signal issued to a human supervisor. For a proof of concept, the proposed SCA is applied to an autonomous driving scenario, where it is illustrated and compared in different obstacle avoidance scenarios. A major challenge of the SCA lies in the mismatch between the MPC prediction model and the real system, for which possible remedies are explored.
U2 - 10.23919/ECC54610.2021.9655155
DO - 10.23919/ECC54610.2021.9655155
M3 - Vorabpublikation
BT - A Safe Control Architecture Based on a Model Predictive Control Supervisor for Autonomous Driving
ER -