Abstract

Cardiac conduction disease (CCD), which causes altered electrical impulse propagation in the heart, is a life-threatening condition with high morbidity and mortality. It exhibits genetic and clinical heterogeneity with diverse pathomechanisms, but in most cases, it disrupts the synchronous activity of impulse-generating nodes and impulse-conduction underlying the normal heartbeat. In this study, we investigated a consanguineous Pakistani family comprised of four patients with CCD. We applied whole exome sequencing (WES) and co-segregation analysis, which identified a novel homozygous missense mutation (c.1531T>C;(p.Ser511Pro)) in the highly conserved kinase domain of the cardiac troponin I-interacting kinase (TNNI3K) encoding gene. The behaviors of mutant and native TNNI3K were compared by performing all-atom long-term molecular dynamics simulations, which revealed changes at the protein surface and in the hydrogen bond network. Furthermore, intra and intermolecular interaction analyses revealed that p.Ser511Pro causes structural variation in the ATP-binding pocket and the homodimer interface. These findings suggest p.Ser511Pro to be a pathogenic variant. Our study provides insights into how the variant perturbs the TNNI3K structure-function relationship, leading to a disease state. This is the first report of a recessive mutation in TNNI3K and the first mutation in this gene identified in the Pakistani population.

Original languageEnglish
Article number34440456
JournalGenes
Volume12(8)
Issue number 2021 Aug 21;12(8):1282
Number of pages16
ISSN2073-4425
DOIs
Publication statusPublished - 21.08.2021

Research Areas and Centers

  • Research Area: Medical Genetics
  • Centers: Cardiological Center Luebeck (UHZL)

DFG Research Classification Scheme

  • 205-12 Cardiology, Angiology

Fingerprint

Dive into the research topics of 'A Novel Missense Mutation in TNNI3K Causes Recessively Inherited Cardiac Conduction Disease in a Consanguineous Pakistani Family'. Together they form a unique fingerprint.

Cite this