TY - JOUR
T1 - A multidisciplinary study of iron transport and storage in the marine green alga Tetraselmis suecica
AU - Hartnett, Andrej
AU - Böttger, Lars H.
AU - Matzanke, Berthold F.
AU - Carrano, Carl J.
PY - 2012/11/1
Y1 - 2012/11/1
N2 - The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies being distinguished: strategy I involves the induction of a Fe(III)-chelate reductase (ferrireductase) along with Fe(II) or Fe(III) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine, plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the green alga Tetraselmis suecica. Short term radio-iron uptake studies indicate that iron is taken up by Tetraselmis in a time and concentration dependent manner consistent with an active transport process. Based on inhibitor and other studies it appears that a reductive-oxidative pathway such as that found in yeast and the green alga Chlamydomonas reinhardtii is likely. Upon long term exposure to 57Fe we have been able, using a combination of Mössbauer and X-ray absorption spectroscopies, to identify three metabolites. The first exhibits Mössbauer parameters typical of a [Fe 4S4]2+ cluster and which accounts for approximately 10% of the total intracellular iron pool. The second displays a spectrum typical of a [FeIIO6] system accounting for approximately 2% of the total pool. The largest component (ca. 85+%) consists of polymeric iron-oxo mineral species with parameters between that of the crystalline ferrihydrite core of animal ferritins and the amorphous hydrated ferric phosphate of bacterial and plant ferritins.
AB - The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies being distinguished: strategy I involves the induction of a Fe(III)-chelate reductase (ferrireductase) along with Fe(II) or Fe(III) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine, plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the green alga Tetraselmis suecica. Short term radio-iron uptake studies indicate that iron is taken up by Tetraselmis in a time and concentration dependent manner consistent with an active transport process. Based on inhibitor and other studies it appears that a reductive-oxidative pathway such as that found in yeast and the green alga Chlamydomonas reinhardtii is likely. Upon long term exposure to 57Fe we have been able, using a combination of Mössbauer and X-ray absorption spectroscopies, to identify three metabolites. The first exhibits Mössbauer parameters typical of a [Fe 4S4]2+ cluster and which accounts for approximately 10% of the total intracellular iron pool. The second displays a spectrum typical of a [FeIIO6] system accounting for approximately 2% of the total pool. The largest component (ca. 85+%) consists of polymeric iron-oxo mineral species with parameters between that of the crystalline ferrihydrite core of animal ferritins and the amorphous hydrated ferric phosphate of bacterial and plant ferritins.
UR - http://www.scopus.com/inward/record.url?scp=84866900624&partnerID=8YFLogxK
U2 - 10.1016/j.jinorgbio.2012.06.009
DO - 10.1016/j.jinorgbio.2012.06.009
M3 - Journal articles
C2 - 23041362
AN - SCOPUS:84866900624
SN - 0162-0134
VL - 116
SP - 188
EP - 194
JO - Journal of Inorganic Biochemistry
JF - Journal of Inorganic Biochemistry
ER -