A metabolic inhibitor arms macrophages to kill intracellular fungal pathogens by manipulating zinc homeostasis

Diego C.P. Rossi, Julio A. Landero Figueroa, William R. Buesing, Kathleen Candor, Logan T. Blancett, Heather M. Evans, Rena Lenchitz, Bradford L. Crowther, Waleed Elsegeiny, Peter R. Williamson, Jan Rupp, George S. Deepe*

*Corresponding author for this work

Abstract

Macrophages deploy numerous strategies to combat invasion by microbes. One tactic is to restrict acquisition of diverse nutrients, including trace metals, a process termed nutritional immunity. Intracellular pathogens adapt to a resource-poor environment by marshaling mechanisms to harvest nutrients. Carbon acquisition is crucial for pathogen survival; compounds that reduce availability are a potential strategy to control intracellular replication. Treatment of macrophages with the glucose analog 2-deoxy-D-glucose (2-DG) armed phagocytes to eliminate the intracellular fungal pathogen Histoplasma capsulatum in vitro and in vivo. Killing did not rely on altering access to carbon-containing molecules or changes in ATP, ER stress, or autophagy. Unexpectedly, 2-DG undermined import of exogenous zinc into macrophages, decreasing the quantity of cytosolic and phagosomal zinc. The fungus perished as a result of zinc starvation. This change in metal ingress was not ascribed to a defect in a single importer; rather, there was a collective impairment in transporter activity. This effect promoted the antifungal machinery of macrophages and expanded the complexity of 2-DG activities far beyond manipulating glycolysis. Mechanistic metabolic studies employing 2-DG will have to consider its effect on zinc transport. Our preclinical data support consideration of this agent as a possible adjunctive therapy for histoplasmosis.

Original languageEnglish
Article number:e147268
JournalJournal of Clinical Investigation
Volume131
Issue number16
ISSN0021-9738
DOIs
Publication statusPublished - 16.08.2021

Research Areas and Centers

  • Academic Focus: Center for Infection and Inflammation Research (ZIEL)

Fingerprint

Dive into the research topics of 'A metabolic inhibitor arms macrophages to kill intracellular fungal pathogens by manipulating zinc homeostasis'. Together they form a unique fingerprint.

Cite this