Abstract
The multi-domain non-structural protein 3 of SARS-coronavirus is a component of the viral replication/transcription complex (RTC). Among other domains, it contains three sequentially arranged macrodomains: the X domain and subdomains SUD-N as well as SUD-M within the "SARS-unique domain". The X domain was proposed to be an ADP-ribose-1"-phosphatase or a poly(ADP-ribose)-binding protein, whereas SUD-NM binds oligo(G)-nucleotides capable of forming G-quadruplexes. Here, we describe the application of a reverse genetic approach to assess the importance of these macrodomains for the activity of the SARS-CoV RTC. To this end, Renilla luciferase-encoding SARS-CoV replicons with selectively deleted macrodomains were constructed and their ability to modulate the RTC activity was examined. While the SUD-N and the X domains were found to be dispensable, the SUD-M domain was crucial for viral genome replication/transcription. Moreover, alanine replacement of charged amino-acid residues of the SUD-M domain, which are likely involved in G-quadruplex-binding, caused abrogation of RTC activity.
Original language | English |
---|---|
Journal | Virology |
Volume | 484 |
Pages (from-to) | 313-322 |
Number of pages | 10 |
ISSN | 0042-6822 |
DOIs | |
Publication status | Published - 04.07.2015 |
Research Areas and Centers
- Academic Focus: Center for Infection and Inflammation Research (ZIEL)
Coronavirus related work
- Research on SARS-CoV-2 / COVID-19