TY - JOUR
T1 - A Clinical Approach to Semiautomated Three-Dimensional Fetal Brain Biometry—Comparing the Strengths and Weaknesses of Two Diagnostic Tools
T2 - 5DCNS+TM and SonoCNSTM
AU - Gembicki, Michael
AU - Welp, Amrei
AU - Scharf, Jann Lennard
AU - Dracopoulos, Christoph
AU - Weichert, Jan
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/8
Y1 - 2023/8
N2 - (1) Objective: We aimed to evaluate the accuracy and efficacy of AI-assisted biometric measurements of the fetal central nervous system (CNS) by comparing two semiautomatic postprocessing tools. We further aimed to discuss the additional value of semiautomatically generated sagittal and coronal planes of the CNS. (2) Methods: Three-dimensional (3D) volumes were analyzed with two semiautomatic software tools, 5DCNS+™ and SonoCNS™. The application of 5DCNS+™ results in nine planes (axial, coronal and sagittal) displayed in a single template; SonoCNS™ depicts three axial cutting sections. The tools were compared regarding automatic biometric measurement accuracy. (3) Results: A total of 129 fetuses were included for final analysis. Our data indicate that, in terms of the biometric quantification of head circumference (HC), biparietal diameter (BPD), transcerebellar diameter (TCD) and cisterna magna (CM), the accuracy of SonoCNS™ was higher with respect to the manual measurement of an experienced examiner compared to 5DCNS+™, whereas it was the other way around regarding the diameter of the posterior horn of the lateral ventricle (Vp). The inclusion of four orthogonal coronal views in 5DCNS+™ gives valuable information regarding spatial arrangements, particularly of midline structures. (4) Conclusions: Both tools were able to ease assessment of the intracranial anatomy, highlighting the additional value of automated algorithms in clinical use. SonoCNS™ showed a superior accuracy of plane reconstruction and biometry, but volume reconstruction using 5DCNS+™ provided more detailed information, which is needed for an entire neurosonogram as suggested by international guidelines.
AB - (1) Objective: We aimed to evaluate the accuracy and efficacy of AI-assisted biometric measurements of the fetal central nervous system (CNS) by comparing two semiautomatic postprocessing tools. We further aimed to discuss the additional value of semiautomatically generated sagittal and coronal planes of the CNS. (2) Methods: Three-dimensional (3D) volumes were analyzed with two semiautomatic software tools, 5DCNS+™ and SonoCNS™. The application of 5DCNS+™ results in nine planes (axial, coronal and sagittal) displayed in a single template; SonoCNS™ depicts three axial cutting sections. The tools were compared regarding automatic biometric measurement accuracy. (3) Results: A total of 129 fetuses were included for final analysis. Our data indicate that, in terms of the biometric quantification of head circumference (HC), biparietal diameter (BPD), transcerebellar diameter (TCD) and cisterna magna (CM), the accuracy of SonoCNS™ was higher with respect to the manual measurement of an experienced examiner compared to 5DCNS+™, whereas it was the other way around regarding the diameter of the posterior horn of the lateral ventricle (Vp). The inclusion of four orthogonal coronal views in 5DCNS+™ gives valuable information regarding spatial arrangements, particularly of midline structures. (4) Conclusions: Both tools were able to ease assessment of the intracranial anatomy, highlighting the additional value of automated algorithms in clinical use. SonoCNS™ showed a superior accuracy of plane reconstruction and biometry, but volume reconstruction using 5DCNS+™ provided more detailed information, which is needed for an entire neurosonogram as suggested by international guidelines.
UR - http://www.scopus.com/inward/record.url?scp=85168766999&partnerID=8YFLogxK
U2 - 10.3390/jcm12165334
DO - 10.3390/jcm12165334
M3 - Journal articles
AN - SCOPUS:85168766999
SN - 2077-0383
VL - 12
JO - Journal of Clinical Medicine
JF - Journal of Clinical Medicine
IS - 16
M1 - 5334
ER -