3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling

Juliane Dinter, Jessica Mühlhaus, Simon Friedrich Jacobi, Carolin Leonie Wienchol, Maxi Cöster, Jaroslawna Meister, Carolin Stephanie Hoefig, Anne Müller, Josef Köhrle, Annette Grüters, Heiko Krude, Jens Mittag, Torsten Schöneberg, Gunnar Kleinau, Heike Biebermann

Abstract

Most in vivo effects of 3-iodothyronamine (3-T1AM) have been thus far thought to be mediated by binding at the trace amine-associated receptor 1 (TAAR1). Inconsistently, the 3-T1AM-induced hypothermic effect still persists in Taar1 knockout mice, which suggests additional receptor targets. In support of this general assumption, it has previously been reported that 3-T1AM also binds to the α-2A-adrenergic receptor (ADRA2A), which modulates insulin secretion. However, the mechanism of this effect remains unclear. We tested two different scenarios that may explain the effect: the sole action of 3-T1AM at ADRA2A and a combined action of 3-T1AM at ADRA2A and TAAR1, which is also expressed in pancreatic islets. We first investigated a potential general signaling modification using the label-free EPIC technology and then specified changes in signaling by cAMP inhibition and MAPKs (ERK1/2) determination. We found that 3-T1AM induced Gi/o activation at ADRA2A and reduced the norepinephrine (NorEpi)-induced MAPK activation. Interestingly, in ADRA2A/TAAR1 hetero-oligomers, application of NorEpi resulted in uncoupling of the Gi/o signaling pathway, but it did not affect MAPK activation. However, 3-T1AM application in mice over a period of 6 days at a daily dose of 5 mg/kg had no significant effects on glucose homeostasis. In summary, we report an agonistic effect of 3-T1AM on the ADRA2A-mediated Gi/o pathway but an antagonistic effect on MAPK induced by NorEpi. Moreover, in ADRA2A/TAAR1 hetero-oligomers, the capacity of NorEpi to stimulate Gi/o signaling is reduced by co-stimulation with 3-T1AM. The present study therefore points to a complex spectrum of signaling modification mediated by 3-T1AM at different G protein-coupled receptors.

Original languageEnglish
JournalJournal of Molecular Endocrinology
Volume54
Issue number3
Pages (from-to)205-16
Number of pages12
ISSN0952-5041
DOIs
Publication statusPublished - 06.2015

Fingerprint

Dive into the research topics of '3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling'. Together they form a unique fingerprint.

Cite this