Which Patient to Treat Next? Probabilistic Stream-Based Reasoning for Decision Support and Monitoring

Marcel Gehrke, Simon Schiff, Tanya Braun, Ralf Möller

Abstract

Providing decision support for questions such as 'Which Patient to Treat Next?' requires a combination of stream-based reasoning and probabilistic reasoning. The former arises due to a multitude of sensors constantly collecting data (data streams). The latter stems from the underlying decision making problem based on a probabilistic model of the scenario at hand. The STARQL engine handles temporal data streams efficiently and the lifted dynamic junction tree algorithm handles temporal probabilistic relational data efficiently. In this paper, we leverage the two approaches and propose probabilistic stream-based reasoning. Additionally, we demonstrate that our proposed solution runs in linear time w.r.t. the maximum number of time steps to allow for real-time decision support and monitoring.

OriginalspracheEnglisch
Titel2019 IEEE International Conference on Big Knowledge (ICBK)
Seitenumfang8
Herausgeber (Verlag)IEEE
Erscheinungsdatum11.2019
Seiten73-80
Aufsatznummer8944691
ISBN (Print)978-1-7281-4608-9
ISBN (elektronisch)978-1-7281-4607-2
DOIs
PublikationsstatusVeröffentlicht - 11.2019
Veranstaltung10th IEEE International Conference on Big Knowledge - Beijing, China
Dauer: 10.11.201911.11.2019
Konferenznummer: 156494

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
  • Querschnittsbereich: Intelligente Systeme

Fingerprint

Untersuchen Sie die Forschungsthemen von „Which Patient to Treat Next? Probabilistic Stream-Based Reasoning for Decision Support and Monitoring“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren