Abstract

There is a common observation that audio event classification is easier to deal with than detection. So far, this observation has been accepted as a fact and we lack of a careful analysis. In this paper, we reason the rationale behind this fact and, more importantly, leverage them to benefit the audio event detection task. We present an improved detection pipeline in which a verification step is appended to augment a detection system. This step employs a high-quality event classifier to postprocess the benign event hypotheses outputted by the detection system and reject false alarms. To demonstrate the effectiveness of the proposed pipeline, we implement and pair up different event detectors based on the most common detection schemes and various event classifiers, ranging from the standard bag-of-words model to the state-of-the-art bank-of-regressors one. Experimental results on the ITC-Irst dataset show significant improvements to detection performance. More importantly, these improvements are consistent for all detector-classifier combinations.
OriginalspracheEnglisch
Titel2017 25th European Signal Processing Conference (EUSIPCO)
Seitenumfang5
Band2017-January
Herausgeber (Verlag)IEEE
Erscheinungsdatum01.08.2017
Seiten2739-2743
ISBN (Print)978-1-5386-0751-0
ISBN (elektronisch)978-0-9928626-7-1
DOIs
PublikationsstatusVeröffentlicht - 01.08.2017
Veranstaltung25th European Signal Processing Conference - Kos International Convention Center , Kos, Griechenland
Dauer: 28.08.201702.09.2017
Konferenznummer: 131844

Fingerprint

Untersuchen Sie die Forschungsthemen von „What makes audio event detection harder than classification?“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren