Virtual Staining for Mitosis Detection in Breast Histopathology

C. Mercan, G. C.A.M. Mooij, D. Tellez, J. Lotz, N. Weiss, M. Van Gerven, F. Ciompi

Abstract

We propose a virtual staining methodology based on Generative Adversarial Networks to map histopathology images of breast cancer tissue from HE stain to PHH3 and vice versa. We use the resulting synthetic images to build Convolutional Neural Networks (CNN) for automatic detection of mitotic figures, a strong prognostic biomarker used in routine breast cancer diagnosis and grading. We propose several scenarios, in which CNN trained with synthetically generated histopathology images perform on par with or even better than the same baseline model trained with real images. We discuss the potential of this application to scale the number of training samples without the need for manual annotations.

OriginalspracheEnglisch
Titel2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
Seitenumfang5
Herausgeber (Verlag)IEEE
Erscheinungsdatum04.2020
Seiten1770-1774
Aufsatznummer9098409
ISBN (Print)978-1-5386-9331-5
ISBN (elektronisch)978-1-5386-9330-8
DOIs
PublikationsstatusVeröffentlicht - 04.2020
Veranstaltung17th IEEE International Symposium on Biomedical Imaging
- Iowa City, USA / Vereinigte Staaten
Dauer: 03.04.202007.04.2020
Konferenznummer: 160183

Fingerprint

Untersuchen Sie die Forschungsthemen von „Virtual Staining for Mitosis Detection in Breast Histopathology“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren