Virtual Hall sensor triggered multi-MHz endoscopic OCT imaging for stable real-time visualization

Awanish Pratap Singh, Madita Göb, Martin Ahrens, Tim Eixmann, Berenice Schulte, Hinnerk Schulz-Hildebrandt, Gereon Hüttmann, Mark Ellrichmann, Robert Huber, Maik Rahlves

Abstract

Circumferential scanning in endoscopic imaging is crucial across various disciplines, and optical coherence tomography (OCT) is often the preferred choice due to its high-speed, high-resolution, and micron-scale imaging capabilities. Moreover, real-time and high-speed 3D endoscopy is a pivotal technology for medical screening and precise surgical guidance, among other applications. However, challenges such as image jitter and non-uniform rotational distortion (NURD) are persistent obstacles that hinder real-time visualization during high-speed OCT procedures. To address this issue, we developed an innovative, low-cost endoscope that employs a brushless DC motor for scanning, and a sensorless technique for triggering and synchronizing OCT imaging with the scanning motor. This sensorless approach uses the motorx2019;s electrical feedback (back electromotive force, BEMF) as a virtual Hall sensor to initiate OCT image acquisition and synchronize it with a Fourier Domain Mode-Locked (FDML)-based Megahertz OCT system. Notably, the implementation of BEMF-triggered OCT has led to a substantial reduction in image jitter and NURD (lt;4 mrad), thereby opening up a new window for real-time visualization capabilities. This approach suggests potential benefits across various applications, aiming to provide a more accurate, deployable, and cost-effective solution. Subsequent studies can explore the adaptability of this system to specific clinical scenarios and its performance under practical endoscopic conditions.
OriginalspracheEnglisch
ZeitschriftOpt. Express
Jahrgang32
Ausgabenummer4
Seiten (von - bis)5809-5825
Seitenumfang17
DOIs
PublikationsstatusVeröffentlicht - 01.02.2024

Strategische Forschungsbereiche und Zentren

  • Forschungsschwerpunkt: Biomedizintechnik

DFG-Fachsystematik

  • 2.22-32 Medizinische Physik, Biomedizinische Technik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Virtual Hall sensor triggered multi-MHz endoscopic OCT imaging for stable real-time visualization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren