Vessel segmentation in 2D-projection images using a supervised linear hysteresis classifier

Alexandru Paul Condurache, Til Aach

Abstract

2D projection imaging is a widely used procedure for vessel visualization. For the subsequent analysis of the vasculature, precise measurements of e.g. vessel area, vessel length or the number of vessel segments are needed. To achieve these goals vessel enhancement and segmentation are required. While there are already many vasculature specific vessel segmentation algorithms, we describe in this contribution a more general supervised segmentation method which includes a feature extraction step followed by feature selection and segmentation based on the hysteresis classification paradigm. The method was tested on retina photographies. The rates of false positives and correct classifications were comparable with dedicated methods on similar data sets while it needed less time for both training and providing a segmentation result.

OriginalspracheEnglisch
Titel18th International Conference on Pattern Recognition (ICPR'06)
Seitenumfang4
Herausgeber (Verlag)IEEE
Erscheinungsdatum01.12.2006
Seiten343-346
Aufsatznummer1698903
ISBN (Print)978-076952521-1
DOIs
PublikationsstatusVeröffentlicht - 01.12.2006
Veranstaltung18th International Conference on Pattern Recognition
- Hong Kong, Hong Kong
Dauer: 20.08.200624.08.2006
Konferenznummer: 69443

Fingerprint

Untersuchen Sie die Forschungsthemen von „Vessel segmentation in 2D-projection images using a supervised linear hysteresis classifier“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren