Using a Deep Understanding of Network Activities for Workflow Mining

Mona Lange, Felix Kuhr, Ralf Möller

Abstract

Workflow mining is the task of automatically detecting workflows from a set of event logs. We argue that network traffic can serve as a set of event logs and, thereby, as input for workflow mining. Networks produce large amounts of network traffic and we are able to extract sequences of workflow events by applying data mining techniques. We come to this conclusion due to the following observation: Network traffic consists of network packets, which are exchanged between network devices in order to share information to fulfill a common task. This common task corresponds to a workflow event and, when observed over time, we are able to record sequences of workflow events and model workflows as Hidden Markov models (HMM). Sequences of workflow events are caused by network dependencies, which force distributed network devices to interact. To automatically derive workflows based on network traffic, we propose a methodology based on network service dependency mining.
OriginalspracheEnglisch
TitelKI 2016: Advances in Artificial Intelligence
Redakteure/-innenGerhard Friedrich, Malte Helmert, Franz Wotawa
Seitenumfang8
Band9904
ErscheinungsortCham
Herausgeber (Verlag)Springer International Publishing
Erscheinungsdatum08.09.2016
Seiten177-184
ISBN (Print)978-3-319-46072-7
ISBN (elektronisch)978-3-319-46073-4
DOIs
PublikationsstatusVeröffentlicht - 08.09.2016
Veranstaltung39th German Conference on Artificial Intelligence - Klagenfurt, Österreich
Dauer: 26.09.201630.09.2016
Konferenznummer: 181639

DFG-Fachsystematik

  • 409-06 Informationssysteme, Prozess- und Wissensmanagement

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using a Deep Understanding of Network Activities for Workflow Mining“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren