Unsupervised Segmentation of Wounds in Optical Coherence Tomography Images Using Invariant Information Clustering

Julia Andresen*, Timo Kepp, Michael Wang-Evers, Jan Ehrhardt, Dieter Manstein, Heinz Handels

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

Monitoring wound healing with optical coherence tomography (OCT) imaging is a promising research field. So far, however, few data and even less manual annotations of OCT wound images are available. To address this problem, a fully unsupervised clustering method based on convolutional neural networks (CNNs) is presented. The CNN takes image patches as input and assigns them to either wound or healthy skin clusters. Network training is based on a new combination of loss functions that require information invariance and locality preservation. No expensive expert annotations are needed. Locality preservation is applied to different levels of the network and shown to improve the segmentation. Promising results are achieved with an average Dice score of 0.809 and an average rand index of 0.871 for the best performing network version.
OriginalspracheEnglisch
TitelBildverarbeitung für die Medizin 2022 : Proceedings of the German Workshop on Medical Image Computing
Seitenumfang6
Erscheinungsdatum05.04.2022
Seiten1-6
PublikationsstatusVeröffentlicht - 05.04.2022
VeranstaltungBildverarbeitung für die Medizin 2022: Proceedings, German Workshop on Medical Image Computing - Heidelberg, Heidelberg, Deutschland
Dauer: 26.06.202228.06.2022

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Unsupervised Segmentation of Wounds in Optical Coherence Tomography Images Using Invariant Information Clustering“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren