Uncertain Evidence for Probabilistic Relational Models

Marcel Gehrke*, Tanya Braun, Ralf Möller

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

Standard approaches for inference in probabilistic relational models include lifted variable elimination (LVE) for single queries. To efficiently handle multiple queries, the lifted junction tree algorithm (LJT) uses a first-order cluster representation of a model, employing LVE as a subroutine in its steps. LVE and LJT can only handle certain evidence. However, most events are not certain. The purpose of this paper is twofold, (i) to adapt LVE, presenting LVE$$^{evi}$$, to handle uncertain evidence and (ii) to incorporate uncertain evidence for multiple queries in LJT, presenting LJT$$^{evi}$$. With LVE$$^{evi}$$ and LJT$$^{evi}$$, we can handle uncertain evidence for probabilistic relational models, while benefiting from the lifting idea. Further, we show that uncertain evidence does not have a detrimental effect on completeness results and leads to similar runtimes as certain evidence.

OriginalspracheEnglisch
TitelCanadian AI 2019: Advances in Artificial Intelligence
Redakteure/-innenMarie-Jean Meurs, Frank Rudzicz
Seitenumfang14
Band11489 LNAI
Herausgeber (Verlag)Springer, Cham
Erscheinungsdatum24.04.2019
Seiten80-93
ISBN (Print)978-3-030-18304-2
ISBN (elektronisch)978-3-030-18305-9
DOIs
PublikationsstatusVeröffentlicht - 24.04.2019
Veranstaltung32nd Canadian Conference on Artificial Intelligence - Kingston, Kanada
Dauer: 28.05.201931.05.2019

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
  • Querschnittsbereich: Intelligente Systeme

Fingerprint

Untersuchen Sie die Forschungsthemen von „Uncertain Evidence for Probabilistic Relational Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren