Towards Analytics Aware Ontology Based Access to Static and Streaming Data

Ralf Möller, Evgeny Kharlamov, Yannis Kotidis, Sebastian Brandt, Theofilos Mailis, Christian Neuenstadt, Charalampos Nikolaou, Özgür Lütfü Özcep, Christoforos Svingos, Dmitriy Zheleznyakov, Ian Horrocks, Yannis Ioannidis, Steffen Lamparter

Abstract

Real-time analytics that requires integration and aggregation of heterogeneous and distributed streaming and static data is a typical task in many industrial scenarios such as diagnostics of turbines in Siemens. OBDA approach has a great potential to facilitate such tasks; however, it has a number of limitations in dealing with analytics that restrict its use in important industrial applications. Based on our experience with Siemens, we argue that in order to overcome those limitations OBDA should be extended and become analytics, source, and cost aware. In this work we propose such an extension. In particular, we propose an ontology, mapping, and query language for OBDA, where aggregate and other analytical functions are first class citizens. Moreover, we develop query optimisation techniques that allow to efficiently process analytical tasks over static and streaming data. We implement our approach in a system and evaluate our system with Siemens turbine data.
OriginalspracheEnglisch
TitelThe Semantic Web -- ISWC 2016
Redakteure/-innenPaul Groth, Elena Simperl, Alasdair Gray, Marta Sabou, Markus Krötzsch, Freddy Lecue, Fabian Flöck, Yolanda Gil
Seitenumfang19
Band9982
ErscheinungsortCham
Herausgeber (Verlag)Springer International Publishing
Erscheinungsdatum23.09.2016
Seiten344-362
ISBN (Print)978-3-319-46546-3
ISBN (elektronisch)978-3-319-46547-0
DOIs
PublikationsstatusVeröffentlicht - 23.09.2016
Veranstaltung15th International Semantic Web Conference - Kobe, Japan
Dauer: 17.10.201621.10.2016

DFG-Fachsystematik

  • 409-06 Informationssysteme, Prozess- und Wissensmanagement

Fingerprint

Untersuchen Sie die Forschungsthemen von „Towards Analytics Aware Ontology Based Access to Static and Streaming Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren