Abstract
Prostate cancer is a common and clinically heterogeneous disease with marked variability in progression. The recent identification of gene fusions of the 5′-untranslated region of TMPRSS2 (21q22.3) with the ETS transcription factor family members, either ERG (21q22.2), ETV1 (7p21.2), or ETV4 (17q21), suggests a mechanism for overexpression of the ETS genes in the majority of prostate cancers. In the current study using fluorescence in situ hybridization (FISH), we identified the TMPRSS2:ERG rearrangements in 49.2% of 118 primary prostate cancers and 41.2% of 18 hormone-naive lymph node metastases. The FISH assay detected intronic deletions between ERG and TMPRSS2 resulting in TMPRSS2:ERG fusion in 60.3% (35 of 58) of the primary TMPRSS2:ERG prostate cancers and 42.9% (3 of 7) of the TMPRSS2:ERG hormone-naive lymph node metastases. A significant association was observed between TMPRSS2:ERG rearranged tumors through deletions and higher tumor stage and the presence of metastattc disease involving pelvic lymph nodes. Using 100K oligonucleotide single nucleotide polymorphism arrays a homogeneous deletion site between ERG and TMPRSS2 on chromosome 21q22.2-3 was identified with two distinct subclasses distinguished by the start point of the deletion at either 38.765 or 38.911 Mb. This study confirms that TMPRSS2:ERG is fused in approximately half of the prostate cancers through deletion of genomic DNA between ERG and TMPRSS2. The deletion as cause of TMPRSS2:ERG fusion is associated with clinical features for prostate cancer progression compared with tumors that lack the TMPRSS2:ERG rearrangement.
Originalsprache | Englisch |
---|---|
Zeitschrift | Cancer Research |
Jahrgang | 66 |
Ausgabenummer | 17 |
Seiten (von - bis) | 8337-8341 |
Seitenumfang | 5 |
ISSN | 0008-5472 |
DOIs | |
Publikationsstatus | Veröffentlicht - 01.09.2006 |