Time Domain Optimization Techniques for Blind Separation of Non-Stationary Convolutive Mixed Signals

Iain Russell, Alfred Mertins, Jiangtao Xi

Abstract

This paper aims to solve the problem of Blind Signal Separation (BSS) in a convolutive environment based on output correlation matrix diagonalization. Firstly an extension of the closed form gradient and Newton methods used by Joho and Rahbar is developed which encapsulates the more difficult convolutive mixing case. This extension is completely in the time domain and thus avoids the inherent permutation problem associated with frequency domain approaches. We also compare the performance of three commonly used algorithms including Gradient, Newton and global optimization algorithms in terms of their convergence behavior and separation performance in the instantaneous case and then the convolutive case.

OriginalspracheEnglisch
Seiten440-445
Seitenumfang6
PublikationsstatusVeröffentlicht - 01.12.2003
Veranstaltung5th IASTED International Conference on Signal and Image Processing
- Honolulu, USA / Vereinigte Staaten
Dauer: 13.08.200315.08.2003
Konferenznummer: 62496

Tagung, Konferenz, Kongress

Tagung, Konferenz, Kongress5th IASTED International Conference on Signal and Image Processing
Land/GebietUSA / Vereinigte Staaten
OrtHonolulu
Zeitraum13.08.0315.08.03

Fingerprint

Untersuchen Sie die Forschungsthemen von „Time Domain Optimization Techniques for Blind Separation of Non-Stationary Convolutive Mixed Signals“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren