Thermal stimulation of the retina reduces Bruch’s membrane thickness in age related macular degeneration mouse models

Jan Tode*, Elisabeth Richert, Stefan Koinzer, Alexa Klettner, Claus von der Burchard, Ralf Brinkmann, Ralph Lucius, Johann Roider

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

Purpose: To investigate the effect of thermal stimulation of the retina (TS-R) on Bruch’s membrane (BrM) thickness in age-related macular degeneration (AMD) mouse models as a novel concept for the prophylaxis and treatment of dry AMD. Methods: Two knockout AMD mouse models, B6.129P2-Apoetm1Unc/J (ApoE-/-) and B6.129X1-Nfe2I2tm1Ywk/J (NRF2-/-), were chosen. One randomized eye of each mouse in four different groups (two of different age, two of different genotype) of five mice was treated by TS-R (532 nm, 10-ms duration, 50-lm spot size), the fellow eye served as control. Laser power was titrated to barely visible laser burns, then reduced by 70% to guarantee for thermal elevation without damage to the neuroretina, then applied uniformly to the murine retina. Fundus, optical coherence tomography (OCT), and fluorescein angiography (FLA) images were obtained at the day of treatment and 1 month after treatment. Eyes were enucleated thereafter to analyze BrM thickness by transmission electron microscopy (TEM) in a standardized blinded manner. Results: Fundus images revealed that all ApoE-/- and NRF2-/-mice had AMD associated retinal alterations. BrM thickness was increased in untreated controls of both mouse models. Subvisible TS-R laser spots were not detectable by fundus imaging, OCT, or FLA 2 hours or 1 month after laser treatment. TEM revealed a significant reduction of BrM thickness in laser-treated eyes of all four groups compared to their fellow control eyes. Conclusions: TS-R reduces BrM thickness in AMD mouse models ApoE-/- and NRF2-/-without damage to the neuroretina. It may become a prophylactic or even therapeutic treatment option for dry AMD. Translational Relevance: TS-R may become a prophylactic or even therapeutic treatment option for dry AMD.

OriginalspracheEnglisch
Aufsatznummer2
ZeitschriftTranslational Vision Science and Technology
Jahrgang7
Ausgabenummer3
ISSN2164-2591
DOIs
PublikationsstatusVeröffentlicht - 01.05.2018

Strategische Forschungsbereiche und Zentren

  • Forschungsschwerpunkt: Biomedizintechnik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Thermal stimulation of the retina reduces Bruch’s membrane thickness in age related macular degeneration mouse models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren