Projekte pro Jahr
Abstract
The inversion of the one-dimensional Radon transform on the rotation group SO(3) is an ill-posed inverse problem which applies to x-ray tomography with polycrystalline materials. This paper presents a novel approach to the numerical inversion of the one-dimensional Radon transform on SO(3). Based on a Fourier slice theorem the discrete inverse Radon transform of a function sampled on the product space of two two-dimensional spheres is determined as the solution of a minimization problem, which is iteratively solved using fast Fourier techniques for and SO(3). The favorable complexity and stability of the algorithm based on these techniques has been confirmed with numerical tests.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 025011 |
Zeitschrift | Inverse Problems |
Jahrgang | 24 |
Ausgabenummer | 2 |
ISSN | 0266-5611 |
DOIs | |
Publikationsstatus | Veröffentlicht - 01.04.2008 |
Fingerprint
Untersuchen Sie die Forschungsthemen von „The Radon transform on SO(3): A Fourier slice theorem and numerical inversion“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Abgeschlossen
-
Hochauflösende Texturanalyse
Prestin, J. & Schaeben, H.
01.01.03 → 31.12.08
Projekt: DFG-Projekte › DFG Einzelförderungen