Symbolic analysis of high-dimensional time series

Karsten Keller*, Heinz Lauffer

*Korrespondierende/r Autor/-in für diese Arbeit
51 Zitate (Scopus)

Abstract

In order to extract and to visualize qualitative information from a high-dimensional time series, we apply ideas from symbolic dynamics. Counting certain ordinal patterns in the given series, we obtain a series of matrices whose entries are symbol frequencies. This matrix series is explored by simple methods from nominal statistics and information theory. The method is applied to detect and visualize qualitative changes of EEG data related to epileptic activity.

OriginalspracheEnglisch
ZeitschriftInternational Journal of Bifurcation and Chaos in Applied Sciences and Engineering
Jahrgang13
Ausgabenummer9
Seiten (von - bis)2657-2668
Seitenumfang12
ISSN0218-1274
DOIs
PublikationsstatusVeröffentlicht - 01.01.2003

Fingerprint

Untersuchen Sie die Forschungsthemen von „Symbolic analysis of high-dimensional time series“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren