Stream-temporal Querying with Ontologies

Ralf Möller, Christian Neuenstadt, Özgür L. Özçep

Abstract

Recent years have seen theoretical and practical efforts on temporalizing and streamifying ontology-based data access (OBDA). This paper contributes to the practical efforts with a description/evaluation of a prototype implementation for the stream-temporal query language framework STARQL. STARQL serves the needs for industrially motivated scenarios, providing the same interface for querying historical data (reactive diagnostics) and for querying streamed data (continuous monitoring, predictive analytics). We show how to transform STARQL queries w.r.t. mappings into standard SQL queries, the difference between historical and continuous querying relying only in the use of a static window table vs. an incrementally updated window table. Experiments with a STARQL prototype engine using the PostgreSQL DBMS show the implementability and feasibility of our approach.

OriginalspracheEnglisch
TitelHiDeSt '15---Proceedings of the First Workshop on High-Level Declarative Stream Processing (co-located with KI 2015)
Redakteure/-innenDaniela Nicklas, Özgür L. Özçep
Seitenumfang14
Band1447
Herausgeber (Verlag)CEUR-WS.org
Erscheinungsdatum01.09.2015
Seiten42-55
PublikationsstatusVeröffentlicht - 01.09.2015
Veranstaltung1st Workshop on High-Level Declarative Stream Processing, HiDeSt 2015 - co-located with the 38th German AI Conference, KI 2015 - Dresden, Deutschland
Dauer: 21.09.201525.09.2015
Konferenznummer: 115610

DFG-Fachsystematik

  • 409-06 Informationssysteme, Prozess- und Wissensmanagement

Fingerprint

Untersuchen Sie die Forschungsthemen von „Stream-temporal Querying with Ontologies“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren