Statistical Fourier Descriptors for Defect Image Classification

Fabian Timm, Thomas Martinetz

Abstract

In many industrial applications, Fourier descriptors are commonly used when the description of the object shape is an important characteristic of the image. However, these descriptors are limited to single objects. We propose a general Fourier-based approach, called statistical Fourier descriptor (SFD), which computes shape statistics in grey level images. The SFD is computationally efficient and can be used for defect image classification. In a first example, we deployed the SFD to the inspection of welding seams with promising results.
OriginalspracheEnglisch
TitelProceedings of the 20th Int. Conference on Pattern Recognition (ICPR)
Seitenumfang4
Herausgeber (Verlag)IEEE
Erscheinungsdatum07.10.2010
Seiten4190-4193
ISBN (Print)978-1-4244-7542-1
ISBN (elektronisch)978-1-4244-7541-4
DOIs
PublikationsstatusVeröffentlicht - 07.10.2010
Veranstaltung2010 20th International Conference on Pattern Recognition - Istanbul, Türkei
Dauer: 23.08.201026.08.2010

Fingerprint

Untersuchen Sie die Forschungsthemen von „Statistical Fourier Descriptors for Defect Image Classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren