TY - JOUR
T1 - SRC signaling is crucial in the growth of synovial sarcoma cells
AU - Michels, Sebastian
AU - Trautmann, Marcel
AU - Sievers, Elisabeth
AU - Kindler, Dagmar
AU - Huss, Sebastian
AU - Renner, Marcus
AU - Friedrichs, Nicolaus
AU - Kirfel, Jutta
AU - Steiner, Susanne
AU - Endl, Elmar
AU - Wurst, Peter
AU - Heukamp, Lukas
AU - Penzel, Roland
AU - Larsson, Olle
AU - Kawai, Akira
AU - Tanaka, Shinya
AU - Sonobe, Hiroshi
AU - Schirmacher, Peter
AU - Mechtersheimer, Gunhild
AU - Wardelmann, Eva
AU - Buttner, Reinhard
AU - Hartmann, Wolfgang
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2013/4/15
Y1 - 2013/4/15
N2 - Synovial sarcoma is a soft-tissue malignancy characterized by a reciprocal t(X;18) translocation encoding a chimeric transcriptional modifier. Several receptor tyrosine kinases have been found activated in synovial sarcoma; however, no convincing therapeutic concept has emerged from these findings. On the basis of the results of phosphokinase screening arrays, we here investigate the functional and therapeutic relevance of the SRC kinase in synovial sarcoma. Immunohistochemistry of phosphorylated SRC and its regulators CSK and PTP1B (PTPN1) was conducted in 30 synovial sarcomas. Functional aspects of SRC, including dependence of SRC activation on the SS18/SSX fusion proteins, were analyzed in vitro. Eventually, synovial sarcoma xenografts were treated with the SRC inhibitor dasatinib in vivo. Activated phospho (p)-(Tyr416)-SRC was detected in the majority of tumors; dysregulation of CSK or PTP1B was excluded as the reason for the activation of the kinase. Expression of the SS18/SSX fusion proteins in T-REx-293 cells was associated with increased p-(Tyr416)-SRC levels, linked with an induction of the insulin-like growth factor pathway. Treatment of synovial sarcoma cells with dasatinib led to apoptosis and inhibition of cellular proliferation, associated with reduced phosphorylation of FAK (PTK2), STAT3, IGF-IR, and AKT. Concurrent exposure of cells to dasatinib and chemotherapeutic agents resulted in additive effects. Cellular migration and invasion were dependent on signals transmitted by SRC involving regulation of the Rho GTPases Rac and RhoA. Treatment of nude mice with SYO-1 xenografts with dasatinib significantly inhibited tumor growth in vivo. In summary, SRC is of crucial biologic importance and represents a promising therapeutic target in synovial sarcoma. Cancer Res; 73(8); 2518-28.
AB - Synovial sarcoma is a soft-tissue malignancy characterized by a reciprocal t(X;18) translocation encoding a chimeric transcriptional modifier. Several receptor tyrosine kinases have been found activated in synovial sarcoma; however, no convincing therapeutic concept has emerged from these findings. On the basis of the results of phosphokinase screening arrays, we here investigate the functional and therapeutic relevance of the SRC kinase in synovial sarcoma. Immunohistochemistry of phosphorylated SRC and its regulators CSK and PTP1B (PTPN1) was conducted in 30 synovial sarcomas. Functional aspects of SRC, including dependence of SRC activation on the SS18/SSX fusion proteins, were analyzed in vitro. Eventually, synovial sarcoma xenografts were treated with the SRC inhibitor dasatinib in vivo. Activated phospho (p)-(Tyr416)-SRC was detected in the majority of tumors; dysregulation of CSK or PTP1B was excluded as the reason for the activation of the kinase. Expression of the SS18/SSX fusion proteins in T-REx-293 cells was associated with increased p-(Tyr416)-SRC levels, linked with an induction of the insulin-like growth factor pathway. Treatment of synovial sarcoma cells with dasatinib led to apoptosis and inhibition of cellular proliferation, associated with reduced phosphorylation of FAK (PTK2), STAT3, IGF-IR, and AKT. Concurrent exposure of cells to dasatinib and chemotherapeutic agents resulted in additive effects. Cellular migration and invasion were dependent on signals transmitted by SRC involving regulation of the Rho GTPases Rac and RhoA. Treatment of nude mice with SYO-1 xenografts with dasatinib significantly inhibited tumor growth in vivo. In summary, SRC is of crucial biologic importance and represents a promising therapeutic target in synovial sarcoma. Cancer Res; 73(8); 2518-28.
UR - http://www.scopus.com/inward/record.url?scp=84876951877&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-12-3023
DO - 10.1158/0008-5472.CAN-12-3023
M3 - Journal articles
C2 - 23580575
AN - SCOPUS:84876951877
SN - 0008-5472
VL - 73
SP - 2518
EP - 2528
JO - Cancer Research
JF - Cancer Research
IS - 8
ER -