SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images

Benjamin Coors, Alexandru Paul Condurache, Andreas Geiger

Abstract

Omnidirectional cameras offer great benefits over classical cameras wherever a wide field of view is essential, such as in virtual reality applications or in autonomous robots. Unfortunately, standard convolutional neural networks are not well suited for this scenario as the natural projection surface is a sphere which cannot be unwrapped to a plane without introducing significant distortions, particularly in the polar regions. In this work, we present SphereNet, a novel deep learning framework which encodes invariance against such distortions explicitly into convolutional neural networks. Towards this goal, SphereNet adapts the sampling locations of the convolutional filters, effectively reversing distortions, and wraps the filters around the sphere. By building on regular convolutions, SphereNet enables the transfer of existing perspective convolutional neural network models to the omnidirectional case. We demonstrate the effectiveness of our method on the tasks of image classification and object detection, exploiting two newly created semi-synthetic and real-world omnidirectional datasets.
OriginalspracheEnglisch
TitelComputer Vision -- ECCV 2018
Redakteure/-innenVittorio Ferrari, Martial Hebert, Cristian Sminchisescu, Yair Weiss
Seitenumfang17
Band11213
ErscheinungsortCham
Herausgeber (Verlag)Springer International Publishing
Erscheinungsdatum05.10.2018
Seiten525-541
ISBN (Print)978-3-030-01239-7
ISBN (elektronisch)978-3-030-01240-3
DOIs
PublikationsstatusVeröffentlicht - 05.10.2018
Veranstaltung15th European Conference on Computer Vision - Munich, Deutschland
Dauer: 08.09.201814.09.2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren