Sparse Coding Neural Gas Applied to Image Recognition

Abstract

A generalization of the Sparse Coding Neural Gas (SCNG) algorithm for feature learning is proposed and is then discussed in the context of modern classifier techniques for images. Two versions are presented. The latter obtains faster convergence by exploiting the nature of particular feature coding methods. The algorithm is then used as part of a larger image classification system, which is tested on the MNIST handwritten digit dataset and the NORB object dataset, obtaining results close to state-of-the-art methods.

OriginalspracheEnglisch
TitelAdvances in Self-Organizing Maps : 9th Workshop on Self-Organizing Maps
Redakteure/-innenPablo A. Estévez, José C. Príncipe, Pablo Zegers
Seitenumfang10
Herausgeber (Verlag)Springer Berlin Heidelberg
Erscheinungsdatum01.01.2013
Seiten105-114
ISBN (Print)978-3-642-35229-4
ISBN (elektronisch)978-3-642-35230-0
DOIs
PublikationsstatusVeröffentlicht - 01.01.2013
Veranstaltung9th Workshop on Self-Organizing Maps - Santiago, Santiago, Chile
Dauer: 12.12.201214.12.2012
http://www.die.uchile.cl/wsom2012/

Fingerprint

Untersuchen Sie die Forschungsthemen von „Sparse Coding Neural Gas Applied to Image Recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren