Solving the Permutation Problem in Convolutive Blind Source Separation

Radoslaw Mazur, Alfred Mertins

Abstract

This paper presents a new algorithm for solving the permutation ambiguity in convolutive blind source separation. When transformed to the frequency domain, the source separation problem reduces to independent instantaneous separation in each frequency bin, which can be efficiently solved by existing algorithms. But this independency leads to the problem of correct alignment of these single bins which is still not entirely solved. The algorithm proposed in this paper models the frequency-domain separated signals using the generalized Gaussian distribution and utilizes the small deviation of the exponent between neighboring bins for the detection of correct permutations.
OriginalspracheEnglisch
TitelIndependent Component Analysis and Signal Separation
Redakteure/-innenMike E. Davies, Christopher J. James, Samer A. Abdallah, Mark D. Plumbley
Seitenumfang8
Band4666 LNCS
ErscheinungsortBerlin, Heidelberg
Herausgeber (Verlag)Springer Berlin Heidelberg
Erscheinungsdatum01.09.2007
Seiten512-519
ISBN (Print)978-3-540-74493-1
ISBN (elektronisch)978-3-540-74494-8
DOIs
PublikationsstatusVeröffentlicht - 01.09.2007
Veranstaltung7th International Conference on Independent Component Analysis (ICA) and Source Separation - London, Großbritannien / Vereinigtes Königreich
Dauer: 09.09.200712.09.2007
Konferenznummer: 70941

Fingerprint

Untersuchen Sie die Forschungsthemen von „Solving the Permutation Problem in Convolutive Blind Source Separation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren