Solving Packing Problems with Few Small Items Using Rainbow Matchings

Max Bannach, Sebastian Berndt, Marten Maack, Matthias Mnich, Alexandra Lassota, Malin Rau, Malte Skambath

Abstract

An important area of combinatorial optimization is the study of packing and covering problems, such as Bin Packing, Multiple Knapsack, and Bin Covering. Those problems have been studied extensively from the viewpoint of approximation algorithms, but their parameterized complexity has only been investigated barely. For problem instances containing no “small” items, classical matching algorithms yield optimal solutions in polynomial time. In this paper we approach them by their distance from triviality, measuring the problem complexity by the number k of small items. Our main results are fixed-parameter algorithms for vector versions of Bin Packing, Multiple Knapsack, and Bin Covering parameterized by k. The algorithms are randomized with one-sided error and run in time 4k · k! · nO(1). To achieve this, we introduce a colored matching problem to which we reduce all these packing problems. The colored matching problem is natural in itself and we expect it to be useful for other applications. We also present a deterministic fixed-parameter algorithm for Bin Packing with run time O((k!)2 · k · 2k · n log(n)).

OriginalspracheEnglisch
Titel45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)
Seitenumfang14
Herausgeber (Verlag)Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Erscheinungsdatum01.08.2020
Seiten1-14
AufsatznummerMFCS-2020-11
ISBN (Print)978-395977159-7
DOIs
PublikationsstatusVeröffentlicht - 01.08.2020
Veranstaltung45th International Symposium on Mathematical Foundations of Computer Science - Prague, Tschechische Republik
Dauer: 25.08.202026.08.2020
Konferenznummer: 162422

Fingerprint

Untersuchen Sie die Forschungsthemen von „Solving Packing Problems with Few Small Items Using Rainbow Matchings“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren