Abstract
The recognition of physiological reactions with the help of machine learning methods already plays a major role in many research areas, but is still little represented in the field of food hypersensitivity recognition. The present work addresses the question of how food hypersensitivity can be detected by analysing sensor data with explainable machine learning algorithms. In a first step, the Empatica E4 wristband, a wearable device that can be easily integrated into everyday life, collects raw data on various physiological patterns, and algorithms are implemented to extract a variety of features from the raw data. Subsequently, machine learning methods are used to target this classification problem and examine how food hypersensitivity can be detected using these objectively measurable features. In a subject-independent setup, an accuracy of 91% could be achieved, which provides a promising basis for a new non-invasive and objectively measurable method to detect food hypersensitivity.
Originalsprache | Deutsch |
---|---|
Titel | Proceedings of the 8th International Workshop on Sensor-based Activity Recognition and Artificial Intelligence, iWOAR 2023 |
Redakteure/-innen | D. J. C. Matthies, M. Gregorzek, A. Kuijper, H. Leutheuser |
Herausgeber (Verlag) | Association for Computing Machinery |
Erscheinungsdatum | 21.09.2023 |
Aufsatznummer | No. 11 |
ISBN (Print) | 979-840070816-9 |
DOIs | |
Publikationsstatus | Veröffentlicht - 21.09.2023 |
Strategische Forschungsbereiche und Zentren
- Forschungsschwerpunkt: Gehirn, Hormone, Verhalten - Center for Brain, Behavior and Metabolism (CBBM)
- Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
DFG-Fachsystematik
- 205-05 Ernährungswissenschaften
- 205-07 Medizininformatik und medizinische Bioinformatik