Semantic Monte-Carlo localization in changing environments using RGB-D cameras

Marian Himstedt, E. Maehle

Abstract

The localization with respect to a prior map is a fundamental requirement for mobile robots. The commonly used adaptive monte carlo localization (AMCL) can be found on most of the mobile robots ranging from small cleaning robots to large AGVs. While achieving accurate pose estimates in static environments, this algorithm tends to fail in the presence of significant changes. Recently published extensions and alternatives to AMCL observe the environment over longer times while building complex spatio-temporal models. Our approach, in contrast, utilizes object recognition and prior semantic maps to enable robust localization. It exploits the fact that putative changes in the environment can be predicted based on prior semantic knowledge. Our system is experimentally evaluated in a warehouse environment being subject to frequent changes. This emphasizes the importance of our algorithm for challenging industrial applications.
OriginalspracheEnglisch
Titel2017 European Conference on Mobile Robots (ECMR)
Seitenumfang8
Herausgeber (Verlag)IEEE
Erscheinungsdatum01.09.2017
Seiten1-8
ISBN (Print)978-1-5386-1097-8
ISBN (elektronisch)978-1-5386-1096-1
DOIs
PublikationsstatusVeröffentlicht - 01.09.2017
Veranstaltung2017 European Conference on Mobile Robots - Paris, Frankreich
Dauer: 06.09.201708.09.2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „Semantic Monte-Carlo localization in changing environments using RGB-D cameras“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren