Self-attention generative adversarial network for speech enhancement

Huy Phan*, Huy Le Nguyen, Oliver Y. Chén, Philipp Koch, Ngoc Q.K. Duong, Ian McLoughlin, Alfred Mertins

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

Existing generative adversarial networks (GANs) for speech enhancement solely rely on the convolution operation, which may obscure temporal dependencies across the sequence input. To remedy this issue, we propose a self-attention layer adapted from non-local attention, coupled with the convolutional and deconvolutional layers of a speech enhancement GAN (SEGAN) using raw signal input. Further, we empirically study the effect of placing the self-attention layer at the (de)convolutional layers with varying layer indices as well as at all of them when memory allows. Our experiments show that introducing self-attention to SEGAN leads to consistent improvement across the objective evaluation metrics of enhancement performance. Furthermore, applying at different (de)convolutional layers does not significantly alter performance, suggesting that it can be conveniently applied at the highest-level (de)convolutional layer with the smallest memory overhead.
OriginalspracheEnglisch
ZeitschriftICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Seiten (von - bis)7103 - 7107
ISSN1520-6149
DOIs
PublikationsstatusVeröffentlicht - 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Self-attention generative adversarial network for speech enhancement“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren