Secondary cavitation bubble dynamics during laser-induced bubble formation in a small container

Lei Fu, Jing Wang, Siqi Wang, Zhenxi Zhang, Alfred Vogel, Xiao-xuan Liang, Cuiping Yao

Abstract

We investigated secondary cavitation bubble dynamics during laser-induced bubble formation in a small container with a partially confined free surface and elastic thin walls. We employed high-speed photography to record the dynamics of sub-mm-sized laser-induced bubbles and small secondary bubble clouds. Simultaneous light scattering and acoustic measurements were used to detect the oscillation times of laser-induced bubbles. We observed that the appearance of secondary bubbles coincides with a prolonged collapse phase and with re-oscillations of the laser-induced bubble. We observed an asymmetric distribution of secondary bubbles with a preference for the upstream side of the focus, an absence of secondary bubbles in the immediate vicinity of the laser focus, and a migration of laser-induced bubble toward secondary bubbles at large pulse energies. We found that secondary bubbles are created through heating of impurities to form initial nanobubble nuclei, which are further expanded by rarefaction waves. The rarefaction waves originate from the vibration of the elastic thin walls, which are excited either directly by laser-induced bubble or by bubble-excited liquid-mass oscillations. The oscillation period of thin walls and liquid-mass were Twallx2009;x003D;x2009;116 x00B5;s and Tlm x2248; 160 x00B5;s, respectively. While the amplitude of the wall vibrations increases monotonically with the size of laser-induced bubbles, the amplitude of liquid-mass oscillation undulates with increasing bubble size. This can be attributed to a phase shift between the laser-induced bubble oscillation and the liquid-mass oscillator. Mutual interactions between the laser-induced bubble and secondary bubbles reveal a fast-changing pressure gradient in the liquid. Our study provides a better understanding of laser-induced bubble dynamics in a partially confined environment, which is of practical importance for microfluidics and intraluminal laser surgery.
OriginalspracheEnglisch
ZeitschriftOpt. Express
Jahrgang32
Ausgabenummer6
Seiten (von - bis)9747-9766
Seitenumfang20
DOIs
PublikationsstatusVeröffentlicht - 11.03.2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Secondary cavitation bubble dynamics during laser-induced bubble formation in a small container“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren