Second order Runge-Kutta methods for stratonovich stochastic differential equations

Andreas Rößler*

*Korrespondierende/r Autor/-in für diese Arbeit
29 Zitate (Scopus)

Abstract

The weak approximation of the solution of a system of Stratonovich stochastic differential equations with a m-dimensional Wiener process is studied. Therefore, a new class of stochastic Runge-Kutta methods is introduced. As the main novelty, the number of stages does not depend on the dimension m of the driving Wiener process which reduces the computational effort significantly. The colored rooted tree analysis due to the author is applied to determine order conditions for the new stochastic Runge-Kutta methods assuring convergence with order two in the weak sense. Further, some coefficients for second order stochastic Runge-Kutta schemes are calculated explicitly.

OriginalspracheEnglisch
ZeitschriftBIT Numerical Mathematics
Jahrgang47
Ausgabenummer3
Seiten (von - bis)657-680
Seitenumfang24
ISSN0006-3835
DOIs
PublikationsstatusVeröffentlicht - 01.09.2007

Fingerprint

Untersuchen Sie die Forschungsthemen von „Second order Runge-Kutta methods for stratonovich stochastic differential equations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren