Salt overload damages the glycocalyx sodium barrier of vascular endothelium

Hans Oberleithner*, Wladimir Peters, Kristina Kusche-Vihrog, Stefanie Korte, Hermann Schillers, Katrin Kliche, Kilian Oberleithner

*Korrespondierende/r Autor/-in für diese Arbeit
127 Zitate (Scopus)

Abstract

Sodium overload stiffens vascular endothelial cells in vitro and promotes arterial hypertension in vivo. The hypothesis was tested that the endothelial glycocalyx (eGC), a mesh of anionic biopolymers covering the surface of the endothelium, participates in the stiffening process. By using a mechanical nanosensor, mounted on an atomic force microscope, height (∼400 nm) and stiffness (∼0.25 pN/nm) of the eGC on the luminal endothelial surface of split-open human umbilical arteries were quantified. In presence of aldosterone, the increase of extracellular sodium concentration from 135 to 150 mM over 5 days (sodium overload) led the eGC shrink by ∼50% and stiffening by ∼130%. Quantitative eGC analyses reveal that sodium overload caused a reduction of heparan sulphate residues by 68% which lead to destabilization and collapse of the eGC. Sodium overload transformed the endothelial cells from a sodium release into a sodium-absorbing state. Spironolactone, a specific aldosterone antagonist, prevented these changes. We conclude that the endothelial glycocalyx serves as an effective buffer barrier for sodium. Damaged eGC facilitates sodium entry into the endothelial cells. This could explain endothelial dysfunction and arterial hypertension observed in sodium abuse.

OriginalspracheEnglisch
ZeitschriftPflugers Archiv European Journal of Physiology
Jahrgang462
Ausgabenummer4
Seiten (von - bis)519-528
Seitenumfang10
ISSN0031-6768
DOIs
PublikationsstatusVeröffentlicht - 10.2011

Strategische Forschungsbereiche und Zentren

  • Forschungsschwerpunkt: Gehirn, Hormone, Verhalten - Center for Brain, Behavior and Metabolism (CBBM)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Salt overload damages the glycocalyx sodium barrier of vascular endothelium“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren