Abstract
Rooted tree analysis is adapted from stochastic differential equations to derive systematically general Runge-Kutta methods for deterministic affinely controlled nonlinear systems. Order conditions are found and some specific coefficients for second- and third-order methods are determined, which are then used for simulations compared with the Taylor methods for affinely controlled nonlinear systems derived by Grüne and Kloeden.
Originalsprache | Englisch |
---|---|
Zeitschrift | Journal of Computational and Applied Mathematics |
Jahrgang | 205 |
Ausgabenummer | 2 |
Seiten (von - bis) | 957-968 |
Seitenumfang | 12 |
ISSN | 0377-0427 |
DOIs | |
Publikationsstatus | Veröffentlicht - 15.08.2007 |