Robust retina-based person authentication using the sparse classifier

A. P. Condurache, J. Kotzerke, A. Mertins


We address the problem of person authentication, including verification and identification, using the vascular network of the retina. We propose a novel feature extraction process that includes the segmentation of feature points related to anatomical characteristics of the retinal vessel-network, the description of these points with the help of the scale-invariant feature transform (SIFT) and the computation of a final feature vector related to the statistical characteristics of the SIFT-based description. After feature extraction, authentication is conducted with the help of the sparse classifier. We successfully test our methods on two databases, one publicly available and the other one (that we now make available as well) specially generated for this purpose. The results show that apart from high accuracy, the proposed algorithm enjoys a set of invariance properties that make it robust to a set of issues afflicting retina-based person authentication systems, while being fast enough to allow practical deployment.
Titel2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)
Herausgeber (Verlag)IEEE
ISBN (Print)978-1-4673-1068-0
PublikationsstatusVeröffentlicht - 01.08.2012
Veranstaltung20th European Signal Processing Conference - Bucharest, Rumänien
Dauer: 27.08.201231.10.2018
Konferenznummer: 93973


Untersuchen Sie die Forschungsthemen von „Robust retina-based person authentication using the sparse classifier“. Zusammen bilden sie einen einzigartigen Fingerprint.