Robust and Markerfree in vitro Axon Segmentation with CNNs

Philipp Grüning*, Alex Palumbo, Svenja Kim Landt, Lara Heckmann, Leslie Brackhagen, Marietta Zille, Amir Madany Mamlouk

*Korrespondierende/r Autor/-in für diese Arbeit

Abstract

The automated in vitro segmentation of axonal phase-contrast images to allow axonal tracing over time is highly desirable to understand axonal biology in the context of health and disease. While deep learning has become a powerful tool in biomedical image analysis for semantic segmentation tasks, segmentation performance has been limited so far since axons are long and thin objects that are sensitive to under- and/or over-segmentation. We here propose the use of an ensemble-based convolutional neural network (CNN) framework for the segmentation of axons on phase-contrast microscopic images. The mean ResNet-50 ensemble performed better than the max u-net ensemble on the axon segmentation task. We estimated an upper limit for the expected improvement using an oracle-machine. Additionally, we introduced a soft version of the Dice coefficient that describes the visually perceived quality of axon segmentation better than the standard Dice. Importantly, the mean ResNet-50 ensemble reached the performance level of human experts. Taken together, we developed a CNN to robustly segment axons in phase-contrast microscopy that will foster further investigations of axonal biology in health and disease.

OriginalspracheEnglisch
TitelMobiHealth 2020: Wireless Mobile Communication and Healthcare
Seitenumfang11
Band362
Herausgeber (Verlag)Springer, Cham
Erscheinungsdatum2021
Seiten274-284
ISBN (Print)978-3-030-70568-8
ISBN (elektronisch)978-3-030-70569-5
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung9th EAI International Conference on Wireless Mobile Communication and Healthcare - Virtual Event
Dauer: 19.11.202019.11.2020

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
  • Querschnittsbereich: Intelligente Systeme

DFG-Fachsystematik

  • 409-05 Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung

Fingerprint

Untersuchen Sie die Forschungsthemen von „Robust and Markerfree in vitro Axon Segmentation with CNNs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren