Rhinovirus infections change DNA methylation and mRNA expression in children with asthma

Martin Pech, Markus Weckmann, ALLIANCE Study Group as part of the German Centre for Lung Research (DZL)

15 Zitate (Scopus)

Abstract

Human rhinovirus infection (HRVI) plays an important role in asthma exacerbations and is thought to be involved in asthma development during early childhood. We hypothesized that HRVI causes differential DNA methylation and subsequently differential mRNA expression in epithelial cells of children with asthma. Primary nasal epithelial cells from children with (n = 10) and without (n = 10) asthma were cultivated up to passage two and infected with Rhinovirus-16 (RV-16). HRVI-induced genome-wide differences of DNA methylation in asthmatics (vs. controls) and resulting mRNA expression were analyzed by the Human-Methylation450 BeadChip Kit (Illumina) and RNA sequencing. These results were further verified by pyrosequencing and quantitative PCR, respectively. 471 CpGs belonging to 268 genes were identified to have HRVI-induced asthma-specifically modified DNA methylation and mRNA expression. A minimum-change criteria was applied to restrict assessment of genes with changes in DNA methylation and mRNA expression of at least 3% and least 0.1 reads/kb per million mapped reads, respectively. Using this approach we identified 16 CpGs, including HLA-B-associated transcript 3 (BAT3) and Neuraminidase 1 (NEU1), involved in host immune response against HRVI. HRVI in nasal epithelial cells leads to specific modifications of DNA methylation with altered mRNA expression in children with asthma. The HRVI-induced alterations in DNA methylation occurred in genes involved in the host immune response against viral infections and asthma pathogenesis. The findings of our pilot study may partially explain how HRVI contribute to the persistence and progression of asthma, and aid to identify possible new therapeutic targets. The promising findings of this pilot study would benefit from replication in a larger cohort.

OriginalspracheEnglisch
Aufsatznummere0205275
ZeitschriftPLoS ONE
Jahrgang13
Ausgabenummer11
DOIs
PublikationsstatusVeröffentlicht - 11.2018

Strategische Forschungsbereiche und Zentren

  • Forschungsschwerpunkt: Gehirn, Hormone, Verhalten - Center for Brain, Behavior and Metabolism (CBBM)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Rhinovirus infections change DNA methylation and mRNA expression in children with asthma“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren