Abstract
In this paper, we present an alternating retrospective MRI reconstruction framework based on a parametrized motion model. An image recovery algorithm promoting sparsity is used in tandem with a numeric parameter search to iteratively reconstruct a sharp image. Additionally, we introduce a multiresolution strategy to restrict the numeric complexity. This algorithm is then tested in conjunction with a simple motion model on simulated data and provides robust and fast reconstruction of sharp images from severely corrupted k-spaces.
Originalsprache | Englisch |
---|---|
Titel | Bildverarbeitung für die Medizin 2019 |
Redakteure/-innen | Heinz Handels, Thomas M. Deserno, Andreas Maier, Klaus Hermann Maier-Hein, Christoph Palm, Thomas Tolxdorff |
Seitenumfang | 6 |
Herausgeber (Verlag) | Springer Vieweg, Wiesbaden |
Erscheinungsdatum | 07.02.2019 |
Seiten | 140-145 |
ISBN (Print) | 978-3-658-25325-7 |
ISBN (elektronisch) | 978-3-658-25326-4 |
DOIs | |
Publikationsstatus | Veröffentlicht - 07.02.2019 |
Veranstaltung | Workshop on Bildverarbeitung fur die Medizin 2019 - Lübeck, Deutschland Dauer: 17.03.2019 → 19.03.2019 Konferenznummer: 224899 |